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The motion of heated nonvolatile particles in compressible gaseous media is in-
vestigated in the case where their surface temperature is much greater than the
temperature of the surrounding medium at infinity.

Aerosol particles suspended in gas mixtures of nonuniform temperature and concentration
are acted upon by forces produced by thermal and concentration stresses, which can impart
an ordered motion to the particles [1-4]. The motion acquired by particles in a field of
external temperature and concentration gradients is called thermodiffusophoretic motion
[1, 2]. If the motion of the particles is induced by internal heat sources of electromagne-
tic origin, it is called photophoretic motion [3, 4].

The motion of particles for small relative temperature differences in the immediate sur-
roundings has been investigated in sufficient detail in papers published to date on the
theory of thermodiffusophoretic and photophoretic motion [1-4]. It is important from the
theoretical and practical standpoint to study the laws governing the motion of particles when
their mean surface temperature is much greater than the ambient temperature. The particles
can be subjected to strong heating in an electromagnetic field as in, e.g., the laser sens-
ing of clouds and fogs [5].

In the present article we formulate (in the Stokes approximation) a theory of photo-
phoretic, thermophoretic, and diffusophoretic motion of large and moderate-size solid aerosol
particles whose mean surface temperature differs significantly from the ambient temperature.
We analyze the particle transport process at thermal and diffusion Peclet numbers much smaller
than unity. We solve the gasdynamic equations with allowance for the compressibility of the
gaseous medium and a power-law temperature dependence of the transfer coefficients. We as-
sume that kg < x'. We solve the problem in spherical coordinates with origin at the center
of the representative particle.

The distribution of the fields U, P, Tg, T', and C,. are described by the system of equa-
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Expressions for the distributions of the fields tg, ti,'and C,e are obtained in the
course of solving the system of equations (2), (3) by separation of variables:
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where P, = P(cos ©) denotes the Legendre polynomials, y = t/R, tg = Te/Tew
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In Egs. (12) and (13) the variable ¢ = I';/(y + T,). The values of A, and @, are deter-
mined by means of recursion relations, in which Ay, = 9, = 1, A_; = Q_, = 0:
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Because of the small temperature asymmetry o <« k', the coefficient D is estimated ac-
cording to the relation D = Dy t1+m in the determination of the field C,,. This dependence
is taken into account in the solutlon of the diffusion equation. The thermodiffusophoretic
force and velocity are determined by constants T, and M;, which are equal to
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In Egs. (17) W{ and Wg are the derivatives of the functions ¥, and ¥, with respect to y.
The mean surface temperature t;y is related to the mean relative temperature tps by Eq.

(18), in which 2(5) = 2]y, teg = teoly=1s tis = tioly=y:
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Expressions for the coordinates U, and Ug are obtained in the form of infinite series

in Legendre and Gegenbauer polynomials, respectively. The resultant force acting on the

particle is described by the first terms of these expansions:
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Inasmuch as kg < k', the values of the coefficients v and u are estimated in the deriva-
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The functions &,, ¢,, ®,, U,, U; and a, in Egs. (19) and (20) have the form

v

1 - l ]
a, == — e, O =(1+——1a +— yal,
S Zo 1 (+2(1+a)) A+ val

! 1
@1+ m) Uty +—- yUsa, + Usa)
l 3
®3:=3(14—2RT355;J U@h%—Tg-y(Uiay+l&aD’ o
21

1 1 = "
Uy = T3 ["_lz + @ — 1) = I8 — )+ ;::1 (Brsa—Spp) — ]
Up=T3 [ (8 1) L (1= 26, ) 2 - Tnl(— ey 4 26, —
T ( 2 2 AT S

=+ lﬂ
—&) + 2 (— enis + 28042 —€p11) n—J .
n=1

In Egqs. (21) & = T,/(y + Ty), a{’ UE, Ug, etc., are the y-derivatives of the correspond-
ing functions. The values of the coefficients 8,, §,, and £, are determined by means of re-

cursion relations, in which 8, =8, =€, =1, 6. =8_5 = €. = O:
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The values of the coefficients B1 and 32 are determined by substituting Ue and U in
the boundary conditions (4) and (5). Once B, -and B; have been calculated, an equatlon for
the total force F>acting on the particle is obtained by integrating the tensor of viscous
stresses over the particle surface:
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The coefficients f,,, fp;, f7,, and f5; in the equations for the viscous resistance of
the medium FU’ the diffusophoretic force Fp, the thermophoretic force FT, and the photo-
phoretic force Fq can be evaluated according to the equations
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In Egs. (27)-(30) the quantities Cj, Cy, Ky, KTg, BR » BRs KDg» B o By» and BR,
are evaluated at tg, = tgg. In the limit I'; » 0 (small temperature d1fferences in the vi-
cinity of the particle) the coefficients & =1, al=—3, all=12, U,=05, ylL=1, Ul =1, Us=
1/3, U3=1, U3~2, N,=2, Ny=3, Ny=—1, Ny=—6, =1, Pl=0, g,=1/3, and P} = 1

Setting F equal to zero, we obtain an expression for the velocity Up of ordered mo-
tion of the particle as the sum of the diffusophoretic velocity Up, the thermophoretic velo-
city U, and the photophoretic velocity Uq

U, = Up -+ Ur + U, (32)

where
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The form of the coefficients fp,, fr,, and £ qz is analogous to the form of the coeffi-
cients fp;, fri, and fq,, except that the expre351on [U + N, (C ‘/R)] must be replaced by

[UI + N, (Cy/R)] everywhere in front of the braces.

In Egs. (26) and (33) r is a radius vector denoting the positions of points of the
particle, and the integration is carried out over the entire volume of the particle.

The equations obtained for Fy, Fp, Fr, Fg, Up, Ur , and U, can also be used to estimate
the forces acting on the particle and the velocities of its ordered motion for an arbitrary,
not necessarily azimuthally symmetric distribution of the density of heat sources in the par-
ticle volume and for arbitrary relative orientations of the vectors Vtge and VCi..

Tt follows from Eqs. (26) and (33) that the direction of the photophoretic force and
velocity is determined by the direction of the dipole moment of the density of heat sources

frqidV. If the dipole moment coordinate perpendicular to the direction of radiation trans-

v
mission is not equal to zero, particles will be repulsed from (or drawn into) the radiation
flow.
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Fig. 1. Coefficient 9p, vs mean temperature Tiq (K).
Fig. 2. Coefficient ¢y, vs mean temperature T;g (K).

Fig. 3. Coefficient ¢q2 VS mean temperature Tjg (K).
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To illustrate the dependence of U; and Up on Tjg, Figs. 1 and 2 show curves relating
the values of the coefficients @ng:frﬂfrﬂf“=3mm and ¢qf=fﬁﬁbd1“=mmx to the values of Tig
for large aluminum particles of radius R = 15 um suspended in pure nitrogen at a temperature
Tew = 300 K and a pressure P, = 1 atm. The values of ®p, = [po/fpslr;, —soox are estimated in
a vapor—air mixture with C,e = 0.05, Tee = 300 K, and P, = 1 atm (see Fig. 3). Curves 1-3
in Figs. 1-3 are plotted for a = 8 = w =1, 0.7, 0.5, respectively. The values of Kio are
taken from [8] for %m:=:K1Tw=mwK . At Tgw = 300 K the coefficients fy,, fr,, and fqz, are

equal to [polr, —aoox = 1.4-107% , polr _s00x = 2:37-107%  and fadlr, ~300¢ = 1.84- 1071,

NOTATION

Te» Tl, temperature of gas and particle; p = p; + py, p; = nymy, p, = Myn,; Ny, n,, con-
centrations of first and second components of gas mixture; m,, m,, masses of these components;
Cie = n;/n, n = n; + n,; Uy, Uy, polar and radial components of mass flow velocity; Cp, Kpe,
Kpg, isothermal, diffusion, and thermal slip factors; Ky, temperature-jump coefficient; p,,
unit vector in direction of z axis; q4, density of heat sources in particle interior, which
depend on spherical coordinates r, © (0 < © < T); U, gas flow velocity around particle
(U»f{0Z); R, particle radius; (VTow) (VClw), temperature and relative concentration gradients
of first component of binary gas mixture; «', kg, coefficients of kinematic and dynamic vis-
0051ty, diffusion, and thermal conduct1v1ty of particle and gas, respectively {v = Vel

= gt +B, D= Dwtl+m, k' = KltY, Kg = Kmte, where Vo = V(Tew)s Do = D(Tgw), Mo = u(Tem),

Keo = Ke(Tem)]y ow = Teg:;nd C“”==Cw%;;ﬂﬁ5 Py _‘szinlz , unperturbed values of temperature,

relative concentration, and pressure; C;, Cs, Krg, Kpss K, Bﬁ', Bg, Bﬁé, and Bgc are deter-
mined by methods of the kinetic theory of gases and can be taken from [1, 6, 7]; k3 =

T T
K'(Teoo); teg = Te » £y =
e

Tee
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